

Flash Asset Analysis, Profi l ing and Optimization
A Case Study of Zynga’s FarmVille
by Brett Bond

Back to the perennial topic of optimization for Flash games. There are many articles on
the subject, and rightly so, because when writing code for games, sooner (hopefully) or
later performance comes up. In this article, I’d like to relate some of my experience
working for Zynga on the largest Flash game on Earth, FarmVille, and share the lessons
of analysis, profiling and optimization that may shed some light on how we all can
improve our games, no matter how big they may become.

Many Flash gaming articles start with an assumption that your team comprises 3D
artists who just gave up their jobs at Pixar. And they advise rasterization, the process
whereby only bitmap images are rendered, thus saving the CPU cycles required to
calculate the screen coordinates of vector shapes created by the 2D tools such as
Adobe Illustrator, InkScape, and Corel Draw.

Though many top Flash games start with 3D models, created with Maya, 3ds Max, or
Blender and the like, private citizens or even commercial enterprises, may have core
competencies in the 2D vector drawing land and not in 3D. Not to mention that 2D
illustration is often much faster and cheaper to create than 3D, and offers a wider range
of possible styles.

Well my vectorphilic friends, this article is for you. At its heart, the choice between
whether to use vector and raster artwork is a size for speed trade-off: rasters usually
require longer download times for better framerate. So let’s get into a case study,
looking at how Zynga’s FarmVille rates raster vs. vector, and how you can produce
better assets benefiting from all their hard work regardless of your game’s size.

I built the Zynga Optimizer as a profiling and rasterization tool that scores artwork on a
non-linear scale based on vector art framerate, memory and file size. The Optimizer
also rasterizes vector art, creating a series of bitmaps that are bigger, but also generally

faster, than the original vector art. The Optimizer
then scores the raster, comparing its relative speed
improvement with its relative size increase, ranking
each asset in comparison to all other artwork in the
game. That’s very abstract, so let’s look at some
examples.

The FarmVille Deer contains 265 frames, with an
average of 1481 edges per frame. The Optimizer
scores it at a 1.11 out of 5.0. As you’ll see, a very
practical way to compare artwork is to add a large
number of instances to the scene and check the
framerate. So, I put 50 instances of the Deer in the
scene and see a framerate of 16.5 frames per
second (fps) on my Macbook Pro, using 680KB of
memory and file size of 82KB. By rasterizing this
animation we achieve a framerate of 30 fps, but now
require 2MB of memory (each!), and a file size of
208KB. Because of the big memory jump the raster
scores a relative -1.05 in the Optimizer. The
negative score indicates it isn’t worth using. In this
case it’s necessary to improve the original artwork.
More on that later.

Now let’s look at the Sheep Eating
Spaghetti. This vector art weighs in at 6741
edges, has 600 frames, and similar to the
Deer, scores 1.6 out of 5, rendering just 3
frames per second. When rasterized,
framerate goes right up to 30 fps, with only
slightly increased memory and filesize.
Why does the sheep perform so badly as
vector art, and why is it improved so much
when rasterized? The answer is the

number of edges being animated.

The cost of animating vectors is high. And the benefit of rasterization becomes
apparent when artwork contains high vector density (a large number of edges per
screen area).

Finally, let’s look at the Duck. The Duck has just 370
edges, and its Idle animation contains just 117 frames. Yet,
the Duck is cute, the Duck is lively. The Duck is such a
nice duck that it makes us wonder whether the Sheep
Eating Spaghetti and the Deer really need all those curves.
The key lesson for those skilled in illustration is to reduce
vector density and reduce the number of animated vectors
in each frame. This will allow you to create vector
animations that will perform efficiently without the need for
rasterization.

But what about when rasterization is needed for inefficient vector artwork already
created? If you have inefficient assets, sometimes rasterizing is the only way to get
your framerate up. In this case, the use of frame differencing (as in video compression)
is very helpful to reduce file and memory size. Open source png libraries such as
Adobe’s AS3CoreLib provide image compression on each frame for further file size
reduction.

